Systems of Chemical Reactions in Biology: Dynamics, Stochasticity, Spatial Effects and Model Reduction

نویسندگان

  • Carlos Alberto Gómez Uribe
  • Martha L. Gray
چکیده

Cells are continuously sensing and processing information from their environments and responding to it in sensible ways. The communication networks on which such information is handled often consist of systems of chemical reactions, such as signaling pathways or metabolic networks. This thesis studies the dynamics of systems of chemical reactions in the context of biological cells. The first part of this thesis analyzes the osmo-regulation network in yeast, responsible for the regulation of internal osmolarity. We measure the system’s step response in single cells, and find that the steady state is independent of the input, a property termed perfect adaptation that relies on integral feedback control. We then consider the signaling cycle, a pattern of chemical reactions that is often present in signaling pathways, in which a protein can be either active (e.g., phosphorylated) or inactive (e.g., unphosphorylated). We identify new regimes of static and dynamic operation, and find that these cycles can be tuned to transmit or digitize time-varying signals, while filtering input noise. The second part of this thesis considers systems of chemical reactions where stochastic effects are relevant, and simplifies the standard models. We develop an approximate model for the time-evolution of the average concentrations and their variances and covariances in systems with and without spatial gradients. We also describe a framework to identify and derive approximate models for variables that evolve at different time scales in systems without spatial gradients. These tools can help study the impact of stochastic and spatial effects on system behavior. Thesis Supervisor: George C. Verghese, Ph.D. Title: Professor Thesis Supervisor: Leonid Mirny, Ph.D. Title: Associate Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Fluid Dynamics Study of a Complete Coal Direct Chemical Looping Sub-Pilot Unit

The present Computational Fluid Dynamics (CFD) work deals with the modeling of complete coal direct chemical looping sub-pilot unit which use coal as fuel and ferric oxide supported on alumina as an oxygen carrier. The 2D CFD model of the complete arrangement incorporating both fuel and air reactors and their inter-connecting parts was solved using FLUENT. The CFD model wa...

متن کامل

Effect of Cyclosporin-A on the Order and Dynamics of DPPC model Membrane Systems

Laser Raman spectroscopy has been employed to investigate the effects of cyclosporine-A on the order and dynamics of DPPC (Dipalmytoyl Phosphatidyl Choline) midel membrane system. It is shown that the addition of small amount of cyclosporine-A to a DPPC dispersion disturb the system and changes the order/disorder parameter of the model membrane.

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Tutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros

Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctiv...

متن کامل

Spatial dynamics of Phlebotomus sand-fly ecological condition in response to climate change

Background: Changing the climatic pattern can lead to major changes in the geographical distribution of infectious diseases. The aim of this study was to investigate the effect of climate change on the favorable bio-climatological zone for leishmaniasis sand-fly living which is a vector of Leishmania in Iran. Materials and Methods: Data of the climatic factors affecting the biology of sandflies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008